Sains Malaysiana 53(12)(2024): 3907-3918

http://doi.org/10.17576/jsm-2024-5312-06

 

Sedimentologi dan Sekitaran Pengendapan Kumpulan Setul, Pulau Langgun

(Sedimentology and Depositional Environment of Setul Group, Pulau Langgun)

 

NURUL AFIFAH MOHD RADZIR1,2,*, MOHAMMAD EZANIE ABU SAMAH2,3, AZRIN AZMI1,2, CHE AZIZ ALI2 & KAMAL ROSLAN MOHAMED2

 

1Program Geologi, Jabatan Sains Bumi dan Alam Sekitar, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Kumpulan Penyelidikan Lembangan, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3Kementerian Sumber Asli dan Kelestarian Alam, Blok F11, Kompleks F Lebuh Perdana Timur, Presint 1, 62000 Putrajaya, Malaysia

 

Received: 20 June 2024/Accepted: 5 September 2024

 

Abstrak

Kajian sedimentologi batuan Kumpulan Setul di Pulau Langgun, telah dijalankan dengan objektif utama untuk mengenal pasti perbezaan litologi serta sekitaran pengendapannya. Aspek sedimentologi batuan Kumpulan Setul telah diperincikan berdasarkan perbezaan cirian lapangan serta perkaitannya dengan log sedimen. Hasil kajian yang diperoleh menunjukkan batuan Kumpulan Setul yang terdapat di Pulau Langgun dibahagikan kepada lima fasies utama, iaitu fasies trombolit (Ft), fasies stromatolit (Fs), fasies selang lapis batu lodak dan batu lumpur (Fblo-Fblu), fasies batu kapur masif (Fbk) dan fasies batu kapur merah (Fbkm). Sementara itu, berdasarkan perbezaan sekutuan fasies, Kumpulan Setul di sekitar Pulau Langgun diasingkan kepada dua iaitu Sekutuan Fasies 1 (SF1) dan Sekutuan Fasies 2 (SF2). Kedua-dua sekutuan fasies ini menunjukkan terdapat tindakan hidrodinamik daripada pengaruh pasang surut dan melibatkan perubahan paras air laut global berlaku di kawasan sekitaran zon dasar bergelombang ribut dan lebih khususnya adalah di kawasan cerun di zon sub-pasang surut (sub-pasang surut bahagian atas).

 

Kata kunci: Pengaruh hidrodinamik; Pulau Langgun; sub-pasang surut; zon dasar gelombang ribut

 

Abstract

A sedimentological study of the Setul Group of Pulau Langgun was carried out to identify the lithological characteristics and the depositional environment. The sedimentological aspects of the Setul Group outcrops have been detailed based on the outcrops’ characteristics as well as their relationship with the sedimentary log. The results of the study show that the outcrops of the Setul Group found on Pulau Langgun are divided into five main facies, namely thrombolite facies (Ft), stromatolite facies (Fs), interbedded siltstone and mudstone facies (Fblo-Fblu), massive limestone facies (Fbk) and red limestone facies (Fbkm). Meanwhile, based on the facies associations, the Setul Group around Pulau Langgun is separated into Facies Association 1 (SF1) and Facies Association 2 (SF2). Both of these facies’ associations show that there is a hydrodynamic action of tidal influence and involves global sea level changes occurring in the surrounding area of the storm-wave-based zone, specifically in the slope area in the sub-tidal zone (upper part of sub-tidal zone).

 

Keywords: Hydrodynamic affect; Pulau Langgun; storm-wave base zone; sub-tidal

 

REFERENCES

Adachi, N., Ezaki, Y., Liu, J.B. & Cao, J. 2009. Early Ordovician reef construction in Anhui Province, South China: A geobiological transition from microbial to metazoan-dominant reefs. Sedimentary Geology 220(1-2): 1-11.

Ahmad Jantan. 1973. Stratigraphy of the Singa Formation (Upper Paleozoic) in the Southwestern Part of the Langkawi Island Group, West Malaysia. MSc Tesis. Kuala Lumpur: Universiti Malaya (Tidak diterbitkan).

Ahr, W.M. 1971. Paleoenvironment, algal structures and fossil algae in the Upper Cambrian of Central Texas. Journal of Sedimentary Research 41(1): 205-216.

Aitken, J.D. 1967. Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Research 37(4): 1163-1178.

Awramik, S.M. & Vanyo, J.P. 1986. Heliotropicm in modern stromatolites. Science 231: 1279-1281.

Bernhard, J.M., Fisher, L.A., Murphy, Q., Sen, L., Yeh, H.D., Louvakis, A., Gomaa, F., Reilly, M., Batta-Lona, P.G., Bucklin, A., Le Roux, V. & Visscher, P.T. 2023. Transition from stromatolite to thrombolite fabric: Potential role for retuculopodial protists in lake microbialites of a Proterozoic ecosystem analog. Front. Microbiol. 14: 1210781. doi: 10.3389/fmicb.2023.1210781

Bosak, T., Knoll, A.H. & Petroff, A.P. 2013. The meaning of stromatolites. Annual Review of Earth and Planetary Sciences 41: 21-44.

Burton, C.K. 1974. The Satun Group (Nai Tak Formation and Thung Song Limestone) of peninsular Thailand. Sains Malaysiana 3(1): 15-34.

Chafetz, H.S. 2013. Porosity in bacterially induced carbonates: Focus on micropores. AAPG Bull. 97: 2103-2111.

Chen, Y., Yan, Z., Ezaki, Y., Adachi, N. & Liu, J. 2021. Rare earth and yttrium elements (REY) patterns of mesostructures of miaolingian (Cambrian) thrombolites at Jiulongshan, Shandong Province, China. Palaeoworld 30(4): 627-642. doi:10.1016/j.palwor.2020.12.007

Cocks, L.R.M., Fortey, R.A. & Lee, C.P. 2005. A review of Lower and Middle Palaeozoic biostratigraphy in west Peninsular Malaysia and southern Thailand in its context within the Sibumasu Terrane. Journal of Asian Earth Sciences 24(6): 703-717.

Dongjie, T., Shi, X., Jiang, G. & Zhang, W. 2013. Microfabrics in Mesoproterozoic microdigitate stromatolites: Evidence of biogenicity and organomineralization at micron and nanometer scales. Palaios 28(3): 178-194.

Foster, W.J., Heindel, K., Richoz, S., Gliwa, J., Lehrmann, D.J., Baud, A., Kolar-Jurkovšek, T., Aljinović, D., Jurkovšek, B., Korn, D., Martindale, R.C. & Peckmann, J. 2020. Suppressed competitive exclusion enabled the proliferation of Permian/Triassic boundary microbialites. The Depositional Record 6(1): 62-74. https://doi.org/10.1002/dep2.97

Gobbett, D.J. 1972. Geology of the Rebak Islands, Langkawi, West Malaysia. Geological Society of Malaysia Newsletter 37: 2-3.

Harwood, C.L. & Sumner, D.Y. 2011. Origins of microbial microstructures in the Neoproterozoic Beck Spring Dolomite: Variations in microbial community and timing of lithification. Journal of Sedimentary Research 82(9): 709-722.

Jahnert, R.J. & Collins, L.B. 2011. Significance of subtidal microbial deposits in Shark Bay, Australia. Marine Geology 286: 106-111.

Jones, C.R. 1961. A revision of the stratigraphical sequence of the Langkawi Islands, Federation of Malaya. Proceedings 9th Pacific Science Congress 12: 287-300.

Kershaw, S., Crasquin, S., Forel, M.B., Randon, C., Collin, P.Y., Kosun, E., Richoz, S. & Baud, A. 2011. Earliest Triassic microbialites in Çürük Dag, Southern Turkey: Composition, sequences and controls on formation. Sedimentology 58: 739-755.

Lan, C., Xu, Z., Chen, H., Yang, W., Lu, C. & Li, P. 2022. Paleoceanographic reconstruction of the ediacaran Dengying Formation, Sichuan Basin, southwest China: Implications for the origin of precambrian microbial carbonates. J. Asian Earth Sci. 236: 105340.

Lee Chai Peng & Azhar Hussin. 1991. The Wang Kelian Redbeds, a possible extension of the Unnamed Devonian Unit (Rebanggun Beds) into Perlis? (abstract). Warta Geologi17(3): 160.

Lee, J.H., Chen, J. & Chough, S.K. 2010. Paleoenvironmental implications of an extensive maceriate microbialite bed in the Furongian Chaomidian Formation, Shandong Province, China. Palaeogeography, Palaeoclimatology, Palaeoecology 297: 621-632.

Li, Q.J., Li, Y. & Kiessling, W. 2017. The oldest labechiid stromatoporoids from intraskeletal crypts in lithistid sponge-Calathium reefs. Lethaia 50: 140-148.

Li, Q.J., Li, Y., Wang, J.P. & Kiessling, W. 2015. Early Ordovician lithistid sponge- Calathium reefs on the Yangtze Platform and their paleoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 425: 84-96.

Luchinina, V.A. 1975. Paleoecological characteristics of the Early Cambrian of the Siberian Platform. Siberian Branch of Russian Academy of Sciences, Novosibirsk, Nauka. p. 97.

Luo, P., Wang, S., Li, P., Song, J., Jin, T.F., Wang, G. & Yang, S. 2013. Review and prospectives of microbial carbonate reservoirs. Acta Sedimenrol. Sin. 31(5): 807-823.

Meor Hakif Amir Hassan & Lee Chai Peng. 2005. The depositional environment of Mid-Paleozoic red beds at Hutan Aji, Perlis and its bearing on global eustatic sea level change. Geology of Society of Malaysia 48: 65-72.

Meor Hakif Amir Hassan & Lee Chai Peng. 2002. Stratigraphy of the Jentik Formation, the transitional sequence from the Setul Limestone to the Kubang Pasu Formation at Guar Sanai, Guar Jentik, Beseri, Perlis - a preliminary study. Geological Society of Malaysia Bulletin 45: 171-178.

Mohamad Ezanie, A.S., Che Aziz, A., Kamal Roslan, M. & Nurul Afifah, M.R. 2018. Pencirian dan tafsiran Paleo-sekitaran stromatolit dan thrombolit dalam jujukan Batu Kapur Setul di Langkawi dan Perlis. Bull. of the Geological Society of Malaysia 66: 129-140.

Preto, N., Klügel, A., Himmler, T. & Franceschi, M. 2019. Origin of facies zonation in microbial carbonate platform slopes: Clues from trace element and stable isotope geochemistry (Middle Triassic, Dolomites, Italy). Sedimentology 66(1): 81-101. doi:10.1111/sed.12498

Reid, R.P., James, N.P., Macintyre, I.G., Dupraz, C.P. & Burne, R.V. 2003. Shark Bay stromatolites: Microfabrics and reinterpretation of origins. Facies 49: 299-324.

Riding, R. 2011. Microbialites, stromatolites, and thrombolites. In Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series, edited by Reitner, J. & Thiel, V. Dordrecht: Springer. pp. 635-654. https://doi.org/10.1007/978-1-4020-9212-1_196

Rowland, S.M. & Gangloff, R.A. 1988. Structure and paleoecology of Lower Cambrian reefs. PALAIOS 3(2): 111-135.

Shapiro, R.S. & Awramik, S.M. 2006. Favosamaceria cooperi new group and form: A widely dispersed, time-restricted thrombolite. Journal of Paleontology 80: 411-422.

Shen, Y. & Neuweiler, F. 2018. Questioning the microbial origin of automicrite in Ordovician calathid-demosponge carbonate mounds. Sedimentology 65: 303-333.

Suarez-Gonzalez, P., Arenas, C., Benito, M.I. & Pomar, L. 2019. Interplay between biotic and environmental conditions in pre-salt Messinian microbialites of the Western Mediterranean (upper Miocene, Mallorca, Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 533: 109242. doi:10.1016/j.palaeo.2019.109242

Tang, Q., Cui, H. & Zhang, F. 2022. Neoproterozoic earth-life system. Precambrian Res. 368: 106486. doi:10.1016/j.precamres.2021.106486

Wang, Y., Shi, K. & Liu, B. 2023. Sedimentary structures of microbial carbonates in the fourth member of the Middle Triassic Leikoupo Formation, Western Sichuan Basin, China. Sci. Rep. 13: 2300. https://doi.org/10.1038/s41598-023-28211-0

Yancey, T.E. 1975. Evidence against Devonian Unconformity and Middle Paleozoic Age of Langkawi Folding phase in northwest Malaya. American Association of Petroleum Geologists Bulletin 59: 1015-1019.

Zhang, X-Y., Li, Y., Wang, G. & Yang, H-Q. 2021. Different accretion and diagenetic patterns within the fabrics of the Permian-Triassic boundary microbialites on Leye isolated carbonate platform, South China Block. Journal of Palaeogeography volume 10: 11.

Zhan, R., Jin, J., Liu, J., Corcoran, P., Luan, X. & Wei, X. 2016. Meganodular limestone of the Pagoda Formation: A time-specific carbonate facies in the Upper Ordovician of South China. Palaeogeography, Palaeoclimatol. Palaeoecol. 448: 349-362.

Zhu, D., Liu, Q., Wang, J., Hu, G. & Ding, Q. 2022. Transition of seawater conditions favorable for development of microbial hydrocarbon source– Reservoir assemblage system in the Precambrian. Precambrian Res. 374: 106649. doi:10.1016/j.precamres.2022.106649

Zhu, D., Liu, Q., Wang, J., Ding, Q. & He, Z. 2021. Stable carbon and oxygen isotope data of Late Ediacaran stromatolites from a hypersaline environment in the Tarim Basin (NW China) and their reservoir potential. Facies 67(3): 25. doi:10.1007/s10347-021-00633-0

 

*Corresponding author; email: nurulafifah@ukm.edu.my

 

 

 

 

 

 

 

 

previous next